Krahn AD, Longtin Y, Philippon F, Birnie DH, Manlucu J, Angaran P, Rinne C, Coutu B, Low RA, Essebag V, Morillo C, Redfearn D, Toal S, Becker G, Degrâce M, Thibault B, Crystal E, Tung S, LeMaitre J, Sultan O, Bennett M, Bashir J, Ayala-Paredes F, Gervais P, Rioux L, Hemels MEW, Bouwels LHR, van Vlies B, Wang J, Exner DV, Dorian P, Parkash R, Alings M, Connolly SJ. Prevention of Arrhythmia Device Infection Trial: The PADIT Trial. J Am Coll Cardiol. 2018 Dec 18;72(24):3098-3109. doi: 10.1016/j.jacc.2018.09.068. PMID: 30545448.
Abstract
Background: Infection of implanted medical devices has catastrophic consequences. For cardiac rhythm devices, pre-procedural cefazolin is standard prophylaxis but does not protect against methicillin-resistant gram-positive organisms, which are common pathogens in device infections.
Objective: This study tested the clinical effectiveness of incremental perioperative antibiotics to reduce device infection.
Methods: The authors performed a cluster randomized crossover trial with 4 randomly assigned 6-month periods, during which centers used either conventional or incremental periprocedural antibiotics for all cardiac implantable electronic device procedures as standard procedure. Conventional treatment was pre-procedural cefazolin infusion. Incremental treatment was pre-procedural cefazolin plus vancomycin, intraprocedural bacitracin pocket wash, and 2-day post-procedural oral cephalexin. The primary outcome was 1-year hospitalization for device infection in the high-risk group, analyzed by hierarchical logistic regression modeling, adjusting for random cluster and cluster-period effects.
Results: Device procedures were performed in 28 centers in 19,603 patients, of whom 12,842 were high risk. Infection occurred in 99 patients (1.03%) receiving conventional treatment, and in 78 (0.78%) receiving incremental treatment (odds ratio: 0.77; 95% confidence interval: 0.56 to 1.05; p = 0.10). In high-risk patients, hospitalization for infection occurred in 77 patients (1.23%) receiving conventional antibiotics and in 66 (1.01%) receiving incremental antibiotics (odds ratio: 0.82; 95% confidence interval: 0.59 to 1.15; p = 0.26). Subgroup analysis did not identify relevant patient or site characteristics with significant benefit from incremental therapy.
Conclusions: The cluster crossover design efficiently tested clinical effectiveness of incremental antibiotics to reduce device infection. Device infection rates were low. The observed difference in infection rates was not statistically significant. (Prevention of Arrhythmia Device Infection Trial [PADIT Pilot] [PADIT]; NCT01002911).
Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.